Error estimates for the finite element approximation of linear elastic equations in an unbounded domain
نویسندگان
چکیده
In this paper we present error estimates for the finite element approximation of linear elastic equations in an unbounded domain. The finite element approximation is formulated on a bounded computational domain using a nonlocal approximate artificial boundary condition or a local one. In fact there are a family of nonlocal approximate boundary conditions with increasing accuracy (and computational cost) and a family of local ones for a given artificial boundary. Our error estimates show how the errors of the finite element approximations depend on the mesh size, the terms used in the approximate artificial boundary condition, and the location of the artificial boundary. A numerical example for Navier equations outside a circle in the plane is presented. Numerical results demonstrate the performance of our error estimates.
منابع مشابه
Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملError Estimates for the Finite Element Approximation of Problems in Unbounded Domains
In this paper we present error estimates for the finite element approximation of linear elliptic problems in unbounded domains that are outside an obstacle and a semi-infinite strip in the plane. The finite element approximation is formulated on a bounded domain using a nonlocal approximate artificial boundary condition. In fact there is a family of approximate boundary conditions with increasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001